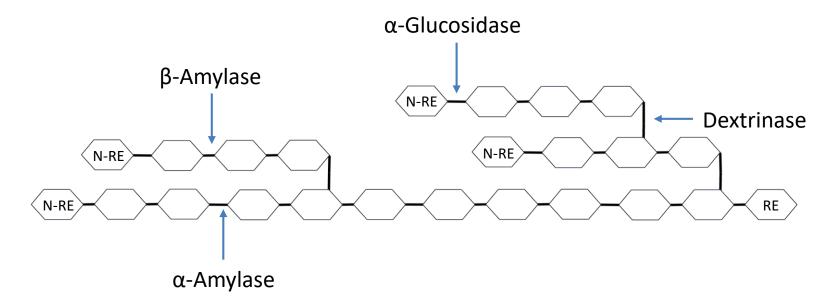


Leibniz-Institut für Lebensmittel-Systembiologie an der Technischen Universität München

Monitoring von Amylase bei der Toastbrotherstellung

Vom Mehl zum Brot


Gerold Felix Rebholz, Sebastian Dirndorfer, Thomas Hofmann und Katharina Anne Scherf

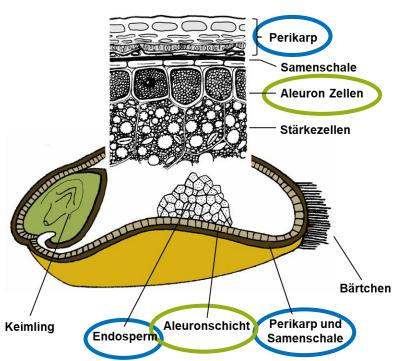
Frühjahrstagung des Weihenstephaner Instituts für Getreideforschung, Freising, 26.3.2019

Amylasen in Weizen

Abbau von Weizenstärke: Reaktionsmechanismen verschiedener Amylasen

N-RE: Nicht reduzierendes Ende

RE: Reduzierendes Ende



Amylasen in Weizen

- Zuordnung zur Proteinfraktion Albumine/Globuline
- Abbau der Stärke im Endosperm während der Keimung des Korns

 α -Amylase

 β -Amylase

 α -Glucosidase

Dextrinase

Bild: S. Bijewitz

Funktionalität von Amylasen

- Einsatz von mikrobiellen Amylasen: Bacillus sp., Aspergillus sp.

Fermentation:

Brotvolumen

Maillard Reaktion:

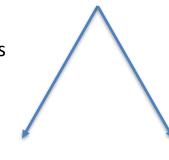
Brotfarbe und -geschmack

Krumenverfestigung:

Brotalterung

Verkleisterung der Stärke:

Brotvolumen



Enzyme im Lebensmittelrecht

Lebensmittelherstellung

Technischer Hilfsstoff

Denaturierung des Proteins durch den Backprozess

Unzureichende Denaturierung des Proteins durch den Backprozess

Lebensmittel

Keine Deklaration

Deklaration?

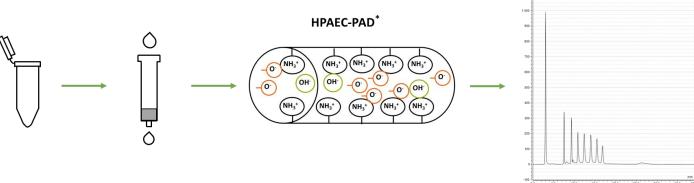
Deklaration nur bei technologischem Effekt auf das Enderzeugnis

Restaktivität ≠ technologischer Effekt

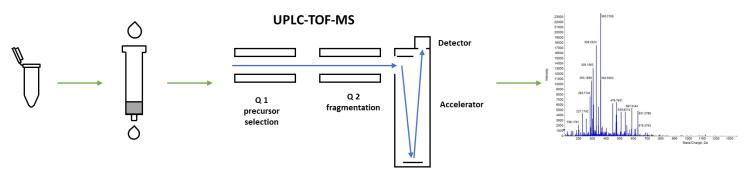
Ziel der Arbeit

Vergleich der Amylaseaktivität:

Toastbrot ohne Enzymzusatz


Toastbrot mit Enzymzusatz

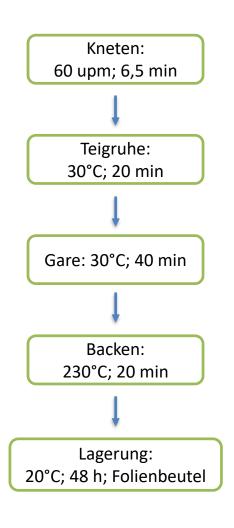
- Detektion einer möglichen Restaktivität der Amylasen im Toastbrot
- Identifizierung relevanter Amylasen in Weizenmehl Type 550 und in kommerziell erhältlichen Enzympräparaten:
 - 5 x α-Amylase
 - 2 x maltotetragene Amylase
 - 5 x maltogene Amylase



Methodik

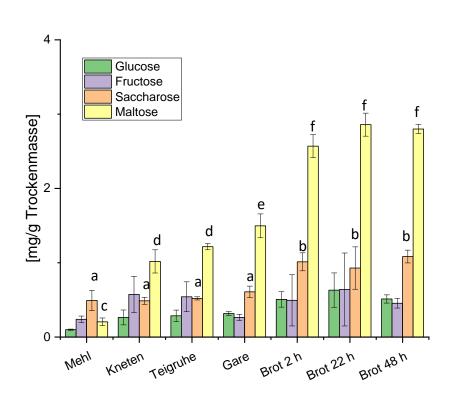
Indirekte Bestimmung der Amylaseaktivität über Quantifizierung der Stärke-Hydrolyse-Produkte

Untargeted LC-MS/MS Screening der Amylasepeptide


 $[\]hbox{* High performance anion exchange chromatography with pulsed amperometric detection}\\$

Methodik

Modell-Toastbrot im 50 g-Maßstab


- Weizenmehl, Type 550
- Pufferlösung, Teigausbeite 160,3:
 0,1 mol·L⁻¹ Citronensäure-Monohydrat
 0,1 mol·L⁻¹ Trinatriumcitrat-Dihydrat
 - pH 2,75
- 0,5 % Natriumchlorid
- 4,0 % Backpulver
- (600 ppm α -Amylase aus *Bacillus subtilis*)

Gehalte freier Zucker in Toastbrot ohne Amylasezusatz

Statistik:

- Linear gemischte Modelle
- P-Werte für multiples Testen angepasst (Bonferroni-Korrektur)

Signifikante Unterschiede im Zuckergehalt:

Saccharose, Maltose

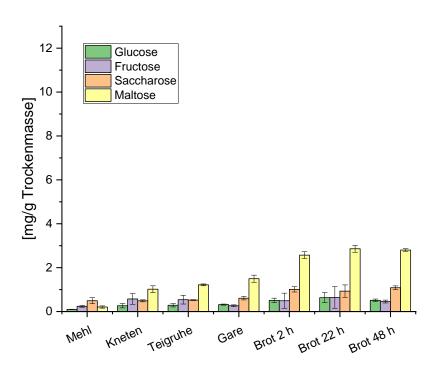
Keine signifikanten Unterschiede im Zuckergehalt:

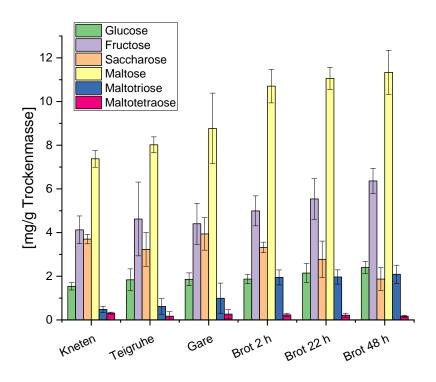
Glucose, Fructose

Detektierbar: Maltotriose, Maltotetraose

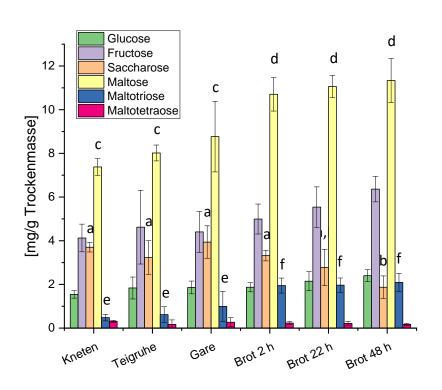
Gehalt freier Zucker in Toastbrot ohne Amylasezusatz

- Größte absolute Veränderung im Maltosegehalt


Mehl: 0,205 mg·g⁻¹ Brot 2 h: 2,569 mg·g⁻¹


Untargeted LC-MS/MS Screening von Amylase-Peptiden in Weizenmehl Type 550
 Ausschließlich β-Amylase-Peptide wurden detektiert

A0A2X0TUH3_Wheat
M1MQ51_Wheat
Q7X9M2_Wheat
AMYB_Wheat


Gehalt freier Zucker in Toastbrot ohne/mit Amylasezusatz

Gehalt freier Zucker in Toastbrot mit Amylasezusatz

Signifikante Unterschiede im Zuckergehalt:

Saccharose, Maltotriose

Keine Signifikante Unterschiede im Zuckergehalt:

Glucose, Fructose, Maltotetraose

Detektierbar: Maltooctaose

Gehalt freier Zucker in Toastbrot

- Größte absolute Veränderung im Maltotriosegehalt

Kneten: 0,205 mg·g⁻¹ Brot 2 h: 1,948 mg·g⁻¹

Hauptzucker: Maltose

Brot 2 h: 10,704 mg·g⁻¹

- Untargeted LC-MS/MS Screening von Amylase-Peptiden im Amylasepräparat

Keine ,unique peptides' für *B. subtilis* gefunden: daher: Keine eindeutige Identifizierung des verwendeten Organismus bzw.

der Amylase-Proteine möglich

Fazit

 Etablierung einer Methode zur Bestimmung der Zuckergehalte in Mehl, Teig und Brot

 Entwicklung eines Toastbrot-Modells zur Simulierung einer praxisnahen Amylaseaktivität

 Erster Vergleich der Amylaseaktivität ohne und mit mikrobieller Amylase

Ausblick

- Backversuche mit verschiedenen Amylase-Präparaten
 - Restaktivität?
- Verifizierung möglicher Restaktivitäten über Enzymassays
- Untargeted LC-MS/MS Screening verschiedener Amylase-Präparate mit semiquantitativer Auswertung der MS Daten
- Optimierung der Extraktion intakter Amylasen aus Teig und Brot

Bild: S. Bijewitz

Gerold Rebholz Leibniz-LSB@TUM Lise-Meitner-Straße 34, 85354 Freising

Phone: +49 8161 71 2926

Mail: g.rebholz.leibniz-lsb@tum.de

Das IGF-Vorhaben 19543 N der Forschungsvereinigung Forschungskreis der Ernährungsindustrie e.V. (FEI), Godesberger Allee 142-148, 53175 Bonn, wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

